π Logarithm & Antilogarithm Tables
Complete reference tables (Base 10) for mathematical calculations
| N | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Mean Differences | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |||||||||||
| .x | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Mean Differences | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |||||||||||
How to Use These Tables
1️⃣ Finding a Logarithm (Log Table)
Example: Find log10(12.34)
- Find row 12 (first two significant digits)
- Look at column 3 (third digit) → Value: 0899
- Add mean difference for 4 (fourth digit) → 14
- Result: 0899 + 14 = 0913, so log(12.34) = 1.0913
2️⃣ Finding an Antilogarithm (Antilog Table)
Example: Find antilog(0.0913)
- Take mantissa: .0913 → Look at row .09
- Find column 1 (third digit) → Value: 1023
- Add mean difference for 3 → 1
- Result: 1023 + 1 = 1024, which means 1.024 (with proper decimal placement)
π Common Applications
- Multiplication: log(A × B) = log(A) + log(B)
- Division: log(A ÷ B) = log(A) - log(B)
- Powers: log(An) = n × log(A)
- Roots: log(∜A) = (1/4) × log(A)
π‘ Tips
- Mean differences help with interpolation for the 4th significant digit
- The characteristic (integer part) comes before the decimal
- All table values are mantissas (fractional part only)
- Use smooth interpolation between table values for higher precision